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Physics 110A, Section 2, Spring 2003 (Strovink)

PROBLEM SET 5

1.
Griffiths Problem 4.28.

2.
In vacuum a large number of nonrelativistic par-
ticles, all with the same |charge| e and mass m,
are created at the origin. Further, all particles
have the same nonzero initial z component of
velocity, vz0. Their other initial velocity compo-
nents vary randomly. The vacuum is filled with
a uniform magnetic field �B = B0ẑ. Show that all
particles pass through at least one common co-
ordinate (x, y, z) other than the origin, and find
that coordinate.

[This focussing property of solenoidal magnetic
fields is widely used to create intense beams of
charged particles, particularly muons.]

3.
Griffiths’ Ex. 5.2 obtains a cycloid solution for
motion in crossed electric and magnetic fields
using the Lorentz force law in the laboratory
frame. Please read it. Then solve the same
problem using a more elegant approach:
(a.)
Nonrelativistically, if frame S ′ moves with veloc-
ity �βc with respect to (laboratory) frame S, the
Galilei transformation for electric fields is

�E ′ = �E + �β × c �B .

Taking �B along x̂ and �E along ẑ, as in the
problem, and assuming E � cB in magnitude,
choose the simplest �β so that �E ′ vanishes.
(b.)
The two frames coincide at t = 0. Using the
Galilei transformation for velocities, if the par-
ticle is at rest at t = 0 in frame S, what is its
initial velocity in frame S ′?
(c.)
The Galilei transformation for magnetic fields is

c �B ′ = c �B − �β × �E .

Because E � cB and β � 1, approximate �B ′ to
be essentially the same as �B. In frame S ′, solve

for the motion of the particle.
(d.)
Using the Galilei transformation for positions,
determine the motion in the lab frame S.

4.
Consider a beam of charged particles with mo-
mentum �p = p0ẑ and fundamental charge e,
incident normally on a “bending magnet”. In a
region 0 < z < D, the field of this magnet may
be approximated to be uniform, �B = B0ŷ; out-
side that region, in the path of the beam, it may
be approximated to vanish.

Show that a bending magnet imparts a fixed
transverse momentum px = pT to every particle,
regardless of its initial momentum p0, so long as
the particle is able to pass through the magnet.
For B0 = 1 Tesla and D = 1 meter, what is pT

in GeV/c?

5.
Consider Ampère’s law in vacuum, as modified
by Maxwell:

∇×
�B

µ0
= �J +

∂

∂t
ε0 �E .

Taking the divergence of this equation, and ap-
plying Gauss’s law, prove that electric charge is
conserved (Griffiths Eq. 5.29). [Therefore, elec-
tric charge conservation is tied fundamentally to
the structure of Maxwell’s equations; observing
the tiniest electric charge nonconservation would
completely invalidate the theory.]

6.
A Helmholtz coil consists of two circular coils
of radius b, each carrying current I in the same
sense. The coils are centered on the z axis,
parallel to the z = 0 plane, and are located at
z = ±a/2.



2

(a.)
Show that all the odd derivatives

dnBz

dzn
, n = 1, 3, 5 . . .

vanish at the origin.
(b.)
Find a (in terms of b) such that

d2Bz

dz2
= 0

at the origin.
(c.)
Helmholtz coils often are used in the lab to can-
cel out the Earth’s magnetic field, or to produce
a small region of uniform magnetic field in which
experiments may be carried out. Along the
z axis, suppose that your experiment requires
Bz = 0.01 T with an error of < 0.1% over a dis-
tance ∆z = 0.01 m. Using an n ≤ 4 Taylor series
expansion, estimate the minimum coil radius b
that is needed. Given b, calculate the current I
that is required.

7.
Consider two loops of wire, each carrying cur-
rent I. The first is a circle of radius b in the
z = 0 plane, centered on the z axis. The second
is a square of side 2b, also in the z = 0 plane and
centered on the z axis.

The magnetic dipole moment �m of a plane wire
loop carrying current I is equal to I�a, where
|a| is the loop’s area and â is the normal to its
plane (the ambiguity in â is resolved by apply-
ing the right-hand rule to the current direction).
Far from magnetic dipoles, their magnetic fields
drop like r−3 (as do electric fields far from elec-
tric dipoles).
(a.)
For either of these wire loops, use Ampère’s law
to show that

∫ ∞

−∞
Bz dz = µ0I ,

where the integral is taken along the z axis.
(b.)
When z 	 b, which loop produces the larger

|Bz|?
(c.)
When z is not 	 b, which loop produces the
larger |Bz|? (You may perform a calculation or
you may provide a cogent argument.)


